
SPECIAL SECIKM!

RULE-BASED SYSTEMS

Rule-based systems automate problem-solving know-how, provide a means for
capturing and refining human expertise, and are proving to be commercially
viable.

FREDERICK HAYES-ROTH

Rule-based systems (RBSs) constitute the best currently
available means for codifying the problem-solving
know-how of human experts. Experts tend to express
most of their problem-solving techniques in terms of a
set of situation-action rules, and this suggests that RBSs
should be the method of choice for building knowledge-
intensive expert systems. Although many different
techniques have emerged for organizing collections of
rules into automated experts, all RBSs share certain key
properties:

1.

2.

3.

4.

5.

They incorporate practical human knowledge in
conditional if-then rules,
their skill increases at a rate proportional to the
enlargement of their knowledge bases,
they can solve a wide range of possibly complex
problems by selecting relevant rules and then com-
bining the results in appropriate ways,
they adaptively determine the best sequence of
rules to execute, and
they explain their conclusions by retracing their
actual lines of reasoning and translating the logic of
each rule employed into natural language.

RBSs address a need for capturing, representing, stor-
ing, distributing, reasoning about, and applying human
knowledge electronically. They provide a practical
0 1985 ACM oool-0782/85/0900-0921 750

means of building automated experts in application
areas where job excellence requires consistent reason-
ing and practical experience. Table I lists some applica-
tion areas currently addressed by RBS technology.

The hallmark of these systems is the way they repre-
sent knowledge about plausible inferences and pre-
ferred problem-solving tactics. Typically, both sorts of
know-how are represented as conditional rules. Figures
I and 2 illustrate rules that apply in a variety of appli-
cations and that employ some of the basic syntactic
conventions of RBSs.

We can define RBSs as modularized know-how systems,
where know-how is practical problem-solving knowl-
edge. Such knowledge consists of various kinds of infor-
mation, including

1. specific inferences that follow from specific obser-
vations;

2.

3.

4.

5.

abstractions, generalizations, and categorizations of
given data;
necessary and sufficient conditions for achieving
some goal;
likeliest places to look for relevant information;
preferred strategies for eliminating uncertainty or
minimizing other risks;

6. likely consequences of hypothetical situations;
7. probable causes of symptoms.

September 1985 Volume 28 Number 9 Communications of the ACM 921

Special Section

TABLE I. Appliiations of RBBs

Equipment maintenance

Component selection

Computer operation

Product configuration

Troubleshooting

Process control

Quality assurance

Diagnosing faults and
recommending repairs

Eliciting requirements and
matching parts from an
electronics catalog

Analyzing requirements, and
selecting and operating
software

Eliciting preferences and
identifying parts that satisfy
constraints

Analyzing situatiis, suggesting
treatments, and prescribing
preventative measures

Spottlng problematic data and
remedying inegufarfties

Assessing tasks, proposing
practices, and enforcing
requirements

Today’s RBS technology provides the first practical
methodology and notation for developing systems capa-
ble of knowledge-intensive performance. Although arti-
ficial intelligence (AI) researchers have developed sev-
eral alternabves, only the RBS approach consistently
produces expert problem solvers. This reflects a feature
of the current state of the art. in automatic reasoning-

that RBSs can directly incorporate rules that emulate
the effective special-case reasoning characteristic of
highly experienced professionals. General-purpose de-
ductive schemes do not emulate experts and therefore
lack the efficiency necessary for solving complex prac-
tical problems. Because each rule in an RBS approxi-
mates an independent nugget of know-how, these sys-
tems have two characteristic features: First, existing
knowledge can be refined, and new knowledge added,
for incremental increases in system performance. Sec-
ond, systems are able to explain their reasoning, mak-
ing their logic practically transparent and allowing
them to satisfy the widely recognized need for under-
standability in computer systems.

By incorporating know-how acquired in an incre-
mental and transparent manner, RBSs open up key
computing applications not readily addressable by al-
ternative techniques. Some of these applications are in
areas where the supply of quality human workers is
insufficient. There are a number of possible reasons for
this: The skill level among trained workers may not be
consistently high enough, experts may perform at a
level far beyond that of average workers, or conven-
tional means of training and automation may fail to
produce adequate performance. Automating expertise
in specialized tasks generally requires a few hundred to
a few thousand heuristic rules. With existing technol-
ogy, this makes good economic sense in hundreds of
application areas.

Of course, in spite of such relevance and potential,

If the plaintiff did receive an eye injury
and there was just one eye that was injured
and the treatment for the eye did require surgery
and the recovery from the injury was almost complete
,and visual acuity was slightly reduced by the injury
and the condition is fixed,

increase the injury trauma factor by $10,000.

If the plaintiff's injury did cause
(a temporary disability of an important function)

and the plaintiff's doctors were not certain about
the disability being temporary

and the plaintiff's recovery was almost complete
and the condition is fixed,

increase the fear factor by $1,000 per day.

If the plaintiff did not wear glasses before the injury
and the plaintiff's injury does require

(the plaintiff to wear glasses),
increase the faculty loss factor by $7,500

and increase the inconvenience factor by $1,500.

The ROSIE programming system, developed at RAND, provides and actions. Each rule expresses an independent chunk of
a stylized English-like syntax for expressing conditions know-how.

flGURE 1. The Representation of Legal Heutistics for Product Liabilii in a ROBIE Program

922 Communicatiom of the ACM September 1985 Volume 28 Number 9

Special Section

Rule408:
C is a car.
If: the pattern observed by attaching an oscilloscope

to the charging circuit of the'car C is
fluctuating.arches, and

the alternator of the car C responds properly to
different loads,

Then: there is strongly suggestive evidence <.Q> that
the cause of the problem with the car C is
voltage.regulator.bad.

Rule428:
C is a car.
If: the pattern obtained by attaching an oscilloscope to the

charging circuit of the car C is straight.line, and
the result pulling out the field connector is no.flash, and
the field connector has does not have a voltage, and
the input of the voltage regulator does not have a voltage, and
the dashboard lights do not glow when their

ground circuit is completed, and
the fusable link is getting voltage, and
the fusable link is not conducting power,

Then: it is definite <l.O> that the cause of the problem with the car C
is fusable.link.bad.

As cars incorporate more electronic subsystems, they become StrUCtUral framework for organizing and applying thousands of
more difficult for the average technician to repair. rules. General Motors plans to aid its service technicians with
Teknowledge’s S.1 expert-system building tool provides a several large-scale RBSs.

FIGURE 2. The Representation of Automotive Troubleshooting Rules in an S.l Program

RBS technology does have its shortcomings. As a new
technology, it will require years of perfecting and fine
tuning. Proposed applications must be assessed care-
fully for feasibility and deployability. Only a small frac-
tion of potential applications can be addressed today
with off-the-shelf products. Nevertheless, RBSs consti-
tute the best means available for building expert sys-
tems that incorporate large amounts of judgmental,
heuristic, experiential know-how. Informal surveys in-
dicate that approximately 50 percent of the Fortune 500
companies are investing in RBSs, and that about 10
percent have applications under development.

The operating concept of RBSs differs radically from
von Neumann architectures. Intelligent problem solv-
ing with RBSs involves an iterative cycle of (1) identify-
ing from experience the heuristic rules that bear on a
problem at hand, and (2) applying one of those rules to
solve or simplify the problem. The technology for
building RBSs supports this cycle by providing a dy-
namic working memory for partial results, a device to
identify relevant rules, and selective means for apply-
ing desirable rules. Many people conjecture that hu-
man problem-solving activity follows the RBS model.
Whether or not that proves true, human experts gener-
ally find it easy to express methods for solving prob-
lems in their application areas by using a rule formula-
tion.

The technology for building RBSs has progressed sig-
nificantly in the last 10 years, as many people have
analyzed the technology and assessed its relevance for
a variety of tasks. Today, we can see that rule-oriented
components are becoming central in many advanced
computing applications.

AN OVERVIEW OF RBSs
Roughly speaking, an RBS consists of a knowledge base
and an inference engine (see Figure 3). The knowledge
base contains rules and facts. Rules always express a
conditional, with an antecedent and a consequent com-
ponent. The interpretation of a rule is that if the ante-
cedent can be satisfied the consequent can too. When
the consequent defines an action, the effect of satisfying
the antecedent is to schedule the action for execution.
When the consequent defines a conclusion, the effect is
to infer the conclusion.

Because the behavior of all RBSs derives from this
simple regimen, their rules will always specify the ac-
tual behavior of the system when particular problem-
solving data are entered. In so doing, rules perform a
variety of distinctive functions:

1. They define a parallel decomposition of state transi-
tion behavior, thereby inducing a parallel decompo-
sition of the overall system state that simplifies au-

September 1985 Volume 28 Number 9 Communications of the ACM 923

Special Section

Knowledge
base

Inputs .

A simple BE6 consists of.stomge and processingetements,
whii are aften referred to resgectivety as tha knowtedge
base and the inference engine. The basic oycte of an BBS
consists of a seleot phase and an execute *aso During the
execute phase, the system interprets the s&o&d rule to
draw inferences that alter the system’8 dynamic memory.
System storage inclmtes components for Wig-term static
data and short-term dynamic: data. The fonptann store,
whii is ths krmwtadga base, contains rules and facts. Rules
specify actions the syetem should initiate when certain trig-
gering conditions occur. These conditions deEne important

patterns of data that can arise in working memory. The sys-
tem represents data in terms of relations, propositions, or
equivalent logical expressions. Facts define static, true prop-
ositiis. In contrast to conventional data-processing sys-
tems, most RBSs distribute their logic over numerous inde-
pendent condition-act&n rules, monitor dynamic results for
trtggering patterns of data, determine their sequential behav-
ior’by selecting their next activity from a set of candidate-
triggered rules, and store their intermediate results exclu-
sively in a global working memory.

FIGURE 3. The Basic Features of an RBS

diting and explanation. Every result can thus be
traced to its antecedent data and intermediate rule-
based inferences.

2. They can simulate deduction and reasoning by ex-
pressing logical relationships (conditionals) and def-
initional equivalences.

3. They can simulate subjective perception by relating
signal data to higher level pattern classes.

4. They can simulate subjective decision making by
using conditional rules to express heuristics.

Several key techniques for organizing RBSs have
emerged. Rules can be used to express deductive
knowledge, :such as logical relationships, and thereby to
support inference, verification, or evaluation tasks.
Conversely, rules can be used to express goal-oriented
knowledge that an RBS can .apply in seeking problem
solutions and cite in justifying its own goal-seeking be-
havior. Finally, rules can be used to express causal
relationships, which an RBS can use to answer “what
if’ questions, or to determine possible causes for speci-
fied events.

An RBS can only solve problems if it incorporates
rules that use symbolic descriptions to characterize rel-

evant situations and corresponding actions. The lan-
guage employed for these descriptions imposes a con-
ceptual framework on the problem and its solution. The
rules may be precise or gross; the intermediate partial
solutions abstract or detailed. Efforts to solve the prob-
lem may proceed top-down, outside-in, bottom-up, or
in some other way. The meaning, importance, and con-
tribution of each rule depend on its effectiveness as a
contributor within the entire set of rules available for
solving a problem.

Facts, the other kind of data in a knowledge base,
express assertions about properties, relations, proposi-
tions, etc. In contrast to rules, which the RBS interprets
as imperatives, facts are usually static and inactive-
implicitly, a fact is silent regarding the pragmatic value
and dynamic utilization of its knowledge. Thus, al-
though in many contexts facts and rules are logically
interchangeable, in the context of RBSs they are quite
distinct.

In addition to its static memory for facts and rules, an
RBS uses a working memory to store temporary asser-
tions. These assertions record earlier rule-based infer-
ences. We can describe the contents of working mem-
ory as problem-solving state information. Ordinarily, the

Communications of the ACM September 1985 Volume 28 Number 9

Special Section

data in working memory adhere to the syntactic con-
ventions of facts. Temporary assertions thus correspond
to dynamic facts.

The computing environment for rule interpretation
consists of current facts and the inference engine itself.
Together, these provide a context for interpreting the
current state, understanding what the rules mean, and
applying relevant rules appropriately. Evidence of this
implicit frame of reference can be found in Figures 1
and 2. The legal rules specify the changes that are to be
made to various “factors” under various conditions, and
the auto repair rules draw conclusions about the causes
of problems. Of course, these rules are not universally
valid. Each depends on many unstated assumptions in
its particular frame of reference. The validity of these
rules depends critically on their being interpreted in
the right context. Thus, RBSs cannot obviate all the
concerns of conventional computer programming (e.g.,
state sequences and variable scoping) because someone
must still ensure that an RBS applies rules appropri-
ately and in meaningful contexts. Many people mistak-
enly assume that RBSs can turn unstructured heaps of
universally valid, independent rules into effective prob-
lem solvers. That is a serious misinterpretation of cur-
rent technology. Furthermore, rule writers must con-
sider the rule interpretation environment to ensure that
a rule or its applications can be translated into appro-
priate natural language.

The basic function of an RBS is to produce results.
The primary output may be a problem solution, the
answer to a question, or an analysis of some data.
Whatever the case, an RBS employs several key pro-
cesses in determining its overall activity. A “world”
manager maintains information in working memory,
and a built-in control procedure defines the basic high-
level loop; if the built-in control provides for pro-
grammable specialized control, an additional process
manages branches to and returns from special control
blocks.

THE RBS NICHE IN COMPUTING
RBSs address a number of shortcomings in conven-
tional programming technology, among them

1. the nonspecifiability of programs,
2. the rapid changes in principles of operation that

can arise during development,
3. the lack of user/expert participation in operations

specification,
4. the lack of experimental development for computer.

based competence, and
5. the lack of expertise in exploiting computer capa-

bilities.

Among the features that allow them to do this are

1. modular know-how;
2. knowledge bases for storing rules and facts that di-

rectly determine decisions;
3. the capacity for incremental development with

steady performance improvements;

4. explanations of results, lines of reasoning, and
questions asked;

6. intelligibly encoded beliefs and problem-solving
techniques;

6. inference chains assembled dynamically by built-in
control procedures that can often perform efficient
searches.

Given this wide range of important applications, it
seems probable that the role of RBSs in program devel-
opment will be expanding.

THE RULE AS AN OBJECT
We speak of a rule as a relatively independent piece or
chunk of know-how. Psychologists have for some time
emphasized the importance of chunks as elementary
patterns in perception and thinking. Chunks are a dis-
tinctly subjective psychological phenomenon: They re-
flect the learned, appropriate, effective distinctions that
people use to make sophisticated high-level decisions.
A rule can serve as just such a chunk of problem-
solving know-how.

As used by most RBSs, rules specify chunks of ana-
lytic problem-solving knowledge. A rule is a datum em-
ployed by an inference engine to infer a solution to its
goal problem. Thus, a rule writer who expresses know-
how in rule format is offering one possible path to re-
ducing a goal to subgoals, to drawing a plausible infer-
ence from plausible data, or to transforming an expres-
sion. This information about the rule typically com-
prises its familiar if-then components. However, as the
number of rules in an RBS grows, a need arises for rule
components that can support multiple functions (see
Figure 4) and thereby extend and maintain the knowl-
edge base. For this reason, many additional facets or
attributes are introduced to represent data about a
rule’s analytic knowledge and its preferred manner
of use.

RBS ARCHITECTURE
An RBS is generally a complete computing system,
which is to say that it can produce an output by apply-
ing memory and processing to an input. An architec-
tural inventory of RBS technology would include the
following four basic elements:

Rules. From an architectural perspective, rules are
data that generally conform to highly specialized gram-
mars capable of using symbolic expressions to define
conditions and actions. Current systems differ primarily
in the generality and notational convenience their sym-
bologies support.

Interpreters. The rule interpreter matches a rule com-
ponent to working memory data. Generally this re-
quires pattern matching to find constants in working
memory that match identical constants or unbound
variables in rule patterns. Existing systems differ pri-
marily in the methods they use to simplify rule defini-
tion and pattern matching. The action of the rule is
produced by another part of the rule interpreter. Ac-

September 1985 Volume 28 Number 9 Communications of the ACM 925

Special Section

ljuperstructure rI
Contained in rule sets

Conditional

Data

IF

Date

<Antecedent> THEN <Consequent>

Author

Uses

. . .

Translations

Control

Rules can ccxltain more information than can be found in a
simple if-then conditional. The antecedent and consequent
specify data sufficient for inferring a conclusion or performing
another action, while other parts of a rule serve additional
important ra4e.s. For instance, most large RBSs benefit from
hierarcMal structuring, whereby individual rules can belong
to one or more higher order cottections. These rule sets
aggregate and differentiate rules according to their functii
within the system. Thus, an RHS is capabte of ignoring rule
sets that might be irrelevant to a particular probfem at a
particular time. For instance, such data as who wrote a rule
and when would be retevant to testing, evaluation, exptana-
tion, and maintenance, but woukl be irrelevant when the rule

was actually being used to make an inference. Typically.
each rule exists in several alternative representatiis or
translations that suit different purposes. For instance, one
machineoriented translation might serve tne need for hgh-
performance at run time, another human+riented form might
use English to support pubtiition and explanation, a third
could exploit terseness to make reading and editing easier,
and other facets of the rule structure might determine how
the inference engine should treat the rule. The system may
need to trace rule evaluations and applications, justify a
rule’s relevance, or even selectively ignore it under certain
conditions.

flGURE 4. The Organization of a Rule into Components to Support Multiple Functions

tions generally fall into one of two categories: changes
to working memory or changes to external actions
like I/O.

Translations. Nearly all RBSs allow for multiple repre-
sentations of rules-one representation might be for
data entry, .another for interpretation, and another for
explanations. Typically, all rules are maintained in one
preferred representation and translated as needed for
other purposes.

Explanations. The hallmark of RBSs has been their
ability to explain their conclusions. Explanations have
been generated by translating the rules that contributed
to a decisio:n into natural language. This requires that a
history of working memory changes and their causes be
kept that can be searched as needed for explanations.

Although RBSs have been organized in a variety of
ways, they all share a basic configuration-they are
sets of decisions about what meaning to give rules, and
how and when to interpret them. Two organizations
are most common: stimulus-driven or forward-chaining
systems, and goal-directed or back-chaining systems. In a
forward-chaining system, a rule is triggered when
changes in ,working memory data produce a situation

that matches its antecedent component. Some RBSs al-
low rules to fire repeatedly as long as the working data
still match the rule, but most process a specific working
memory data configuration only once for each rule. In a
back-chaining system, the RBS begins with a goal and
successively examines any rules with matching conse-
quent components. These candidate rules are consid-
ered one at a time. The unmet conditions of the ante-
cedent are extracted from each plausibly applicable
rule, and these conditions are in turn defined as new
goals. The back-chaining control procedure then shifts
attention recursively toward the new goal. The effort
terminates when the top goal has been reduced to a set
of satisfied subgoals.

From the point of view of computer architecture, two
kernel facilities distinguish RBSs from conventional
systems. First, RBSs make heavy use of pattern match-
ing between rule components and working memory.
Second, they quickly identify rules that become rele-
vant as working memory changes. This means that
there must be a way to access rules by pattern-matched
values. Most RBSs meet this need with software, al-
though some current hardware efforts are attempting to
improve performance for these tasks. Figure 5 shows a
representative sophisticated RBS.

926 Communications of the ACM September 1985 Volume 28 Number 9

Special Section

IMPACTS AND APPLICATIONS
OF RBS TECHNOLOGY

Evolutionary System Development
RBSs have proved invaluable as a practical means for
evolving poorly understood knowledge into a coherent
knowledge base. Although today’s RBSs are no substi-
tute for a full range of mature data-processing (DP)
application-building technology, they do offer a number
of unique advantages that are missing from the conven-
tional DP tool kit. We should anticipate that the essen-
tial ingredients of RBSs will be imported into DP tech-
nology, as the technology matures, to assist in rapid
p.rototyping, improving extensibility, and enhancing
software maintenance and support.

and problem features explicitly, but can depend on the
RBS to automate almost everything else necessary for
solving the problem.

We should anticipate that the complementary
strengths of conventional programming and RBSs will
motivate research efforts to bring the two technologies
together so that applications will be able to exploit the
advantages of both.

Searches
The focus on knowledge in applied AI systems repre-
sents a reaction to the unsuccessful attempt to solve
important problems using general-purpose or weak
methods. As the importance of knowledge became
clear, many AI researchers became knowledge engineers.
These individuals set themselves the task of picking
high-value problems with symbolic solutions, identify-
ing corresponding human experts, and debriefing these
experts to find out what they knew.

In many cases, expertise is the ability that some peo-
ple have to use shortcuts and labor-saving techniques
that less experienced persons would not know about.
Experts are thus able to reduce the equivalent of a
large search space for a general problem-solving pro-
gram to that of the small search space of a specialized,
knowledge-intensive program. So although some RBSs
do perform searches, most rely mainly on a representa-
tion of the problem and chunks of the solution to sim-
plify a task. Search is more of a last resort for these
problem solvers. In fact, most RBSs perform little or no
search.

THE CONCEPTUAL EVOLUTION OF RBSs
The RBS of today incorporates many influences and has
partaken of many related technological developments
(see Figure 6). Its essence derives from the production
system model used in automaton theory and psychol-
ogy. The basic model was the stimulus-response associ-
ation presumed by some to underlie all animal behav-
ior. In a similar manner, computing theorists have
sometimes found it convenient to describe all computa-
tional behavior in terms of state transition tables
that define rules for moving between states. Oliver
Selfridge’s early model, Pandemonium, viewed human
signal interpretation activity in terms of the actions of
independent pattern-action modules called “demons.”
Each demon listened to the “shouts” of subordinates
that were able to recognize constituent features that
were necessary for the demon’s higher order percept.
After hearing all necessary inputs, the demon shouted
its own message, thus indicating the perception of a
higher level pattern.

Many researchers have gravitated toward rule-based
representations of knowledge for two other reasons.
First, rules seem like a natural way to express the
situation-action heuristics evident in the thinking-
aloud problem-solving protocols of experts. Second,
researchers have been able to develop learning pro-
cedures capable of inferring rules from experience.
RBSs can thus often accept and assimilate newly
learned rules merely by incorporating them into the
knowledge base.

Programming
We have already stated that RBS technology requires a
rule writer to consider and understand the organization
and operation of the target system. Rule writing can in
fact be described as a special kind of programming. Like
conventional programming, effective rule programming
requires mental modeling of state changes, syntactic
and semantic checking of rule conditions and execution
effects, and heuristic methods for validating and verify-
ing a proposed system. In contrast to conventional pro-
gramming, however, rule-based programming requires
an author to think more analytically than procedurally,
Most programmers have some difficulty with this for a
few weeks. Instead of first appreciating the relevant
goals and heuristic methods and then implementing a
corresponding customized problem-solving program,
rule-based programmers must first understand the gen-
eral method of rule-based problem solving and then
describe a problem and its related heuristic methods in
a form consistent with the available knowledge base
and inference engine. This is a different skill entirely.
The rule programmer must formulate the heuristics

Specialized RBS architectures have evolved to ad-
dress different target applications. Each specialty seems
to benefit from a slightly different emphasis. Today,
special formalisms and supporting systems have been
developed in such areas as

1. rule-based programming,
2. rule-based signal understanding,
3. rule-based cognitive simulation,
4. teachable and learnable RBSs,
5. systems for learning rules, and
6. systems for building commercjal

systems.
rule-based expert

By now, the key ideas of RBSs have been incorporated
in such other areas of computing as

1. rule-based subsystems for communications archi-
tectures;

2. rule formalisms for representing military doctrine,
standard policies, and historical precedents;

3. rule-based controlled deduction;

September 1985 Volume 28 Number 9 Communications of the ACM 927

Special Section

Rule memory
Fact

memory

outputs 4g-

Unfinished

r--l< actions

Data Updates

Activation/
tivation

I I Selected
action

Incomplete
procedures

fnactive
rules

Inactive
facts

Active Active
rules facts

Delete
completed
activations

+
Data-flow
network

for
partially evaluateci

rule activations

-

Matching
<rule, data>

pairs

c
Control

procedun

Candidate
<rule, data>

Agenda 4
activations

Rule
antecedent

Preferences
and

priorities
t

II Metarules

FIGURE 5. A Representative Sophisticated RBS

928 Communicati~ms of the ACM September 1985 Volume 28 Number 9

Special Section

flGURE 5. A Representative Sophisticated RBS

The basic RBS is just a knowledge base and an inference
engine. The trend, however, is toward more complex and
sophisticated systems like the one pictured here. This trend
is motivated by two goals: greater language clarity and better
run-time parfom7ance.

Knowledge clarity has to do with expressibility and intelligi-
bility. Experts must be able to convey their knowledge to an
RBS as thoroughly and as efficiently as possible, and the
RBS in turn must be able to convey its knowledge and
related reasoning to humans. Knowledge clarity also facili-
tates the modifrcatii and extension of knowledge bases.
Many of the features evident in the diagram, such as the
multidimensional working memory (which distinguishes such
dimensions as space, time, or level of abstraction) and the
separation of rules from metarules and control procedures,
improve knowledge clarity.

The performance goal also motivates many of the embel-
lishments of the sophisticated system. A rule compiler con-
verts the triggering data conditions into a data&w network
that optimizes the computing required to identify executable
rules. The sophisticated system exploits several additional
mechanisms that help to determine which rule should ba
executed next. The prioritized list of rules awaiting execution
constitutes the agenda. Higher level rules known as meta-
rules express preferences that can influence the priority of
specific candiiates on the agenda. The schedulsr examines
the agenda of waiting rules and considers the applicability of
any specialized control procedures the system includes. It
then selects either a new procedure, a procedure continua-
tion, or the action of a high-priority rule for execution.

4. pattern-directed modules, or macrorules, for dis-
tributed architectures and systems of cooperating
experts;

5. metarules for heuristic adaptive control of resource-
limited systems;

6. rules as a basis for enforcing constraints.

THE EVOLUTION OF RBS TECHNOLOGY
RBS technology incorporates many ideas from diverse
sources. A brief and highly simplified recounting of this
development follows, focusing on the principal develop-
ments in computer science that have most advanced
the RBS field.

The starting point was decision tables and compilers.
This technology, which emerged about 20 years ago,
provided a representation of decision logic for transac-
tion processing and report generation. Decision table
entries define condition-action rules that execute se-
quentially on the current input data. The context ef-
fects are immediate because there are no working data.
The only knowledge-base entries are the rules, which
must represent simple Boolean conditions. The short-
comings of decision tables were, in retrospect, consider-
able: Large rule tables are quite complex, the rigid or-
der of rule evaluation often proves unsatisfactory, and
the inability to describe complex symbolic patterns or

to combine intermediate results dynamically limits the
range of applications.

Early AI problem-solving languages like PLANNER,
which was developed at MIT, provided a way to repre-
sent rules within the context of programmable theorem
provers. Workers at Carnegie-Mellon were the first to
build RBSs with thousands of rules and to develop effi-
cient compilers and translators. One such RBS, known
as XCON, became the first expert system to earn a
multimillion dollar profit. It was used to eliminate er-
rors in Digital Equipment Corporation VAX orders. The
general rule-based programming system known as OPS,
which was used for XCON, has since been used for
several other RBS applications.

Workers at Stanford developed the MYCIN family of
RBSs. MYCIN was the first RBS the expertise of which
was acknowledged as such by experts. It was able to
perform expert-level subjective reasoning with uncer-
tain data and knowledge and to explain its reasoning in
English. A similar system called PROSPECTOR, which
was developed by SRI to automate knowledge of min-
eral deposits, is credited with producing multimillion
dollar benefits for at least one mine operation. Subse-
quent work at Stanford on TEIRESIAS and MRS empha-
sized metarules for expressing explicit knowledge
about control.

Systems at Stanford and CMU that were originally
developed to reason about signal data have evolved to
handle large macrorules known as specialists, knowledge
sources, or pattern-directed modules. These systems,
among which are HEARSAY-II, HASP, AGE, and BB-1,
often pack a great deal of knowledge into a single mod-
ule. Each module has a condition and an action, and as
overall systems, they behave like other RBSs we have
considered. They differ from more typical RBSs in us-
ing local memory in their computations. In this regard,
they have much in common with object-oriented archi-
tectures like Smalltalk and Ada@ packages.

PROLOG was the first general-purpose logic-based
programming language. PROLOG is essentially an RBS
that uses stored facts and rules to deduce solutions to
goal patterns. It was designed for theorem proving, but
has proved attractive for a wider range of AI tasks.

The RITA and ROSIE systems developed by RAND
advance the use of RBS methods for conventional pro-
gramming. These systems blend rule-based program
representation with flexible I/O. They are thus very
attractive for designers of automated intelligent assis-
tants for computer-based communication tasks.

The M.le programming system developed at
Teknowledge incorporates techniques for tolerating un-
certainty and combining evidence in a general-purpose
rule-based programming system that operates on an
IBM personal computer. M.l marries the rule-based
programming capabilities of PROLOG, RITA, and
ROSIE to the evidence-combining capabilities of
MYCIN.
Ada is a trademark of the U.S. Department of Defense.
Ml is a trademark of Teknowledge.

September 1985 Volume 28 Number 9 Communications of the ACM 929

Special Section

RBS technology is the result of efforts to apply general con-
cepts from psychology and computing theory to the simula-
tion of expertise. This figure, which is in the form of a nauti-
lus, shows how RBS technology, psychology, computing
theory, and various application areas are interconnected.
Each new development in one area is shown to depend on
developments in related areas, as well as on generations of
previous developments. Different pathways through the spi-
ral illustrate (different historical perspectives on technological
history. Tracing the spiral clockwise recapitulates the succes-
sive cycles of concurrent activity in the four sectors. Travers-
ing a radial spoke outward from the center recapitulates the
successive c:hanges in concept and zeitgeist within a disci-
pline.

At the outset, Markov rules provided a simple technique
for defining stochastic processes with probabilistic rules that
mapped any c&rent state into its possible successors. Math-
ematical theorist Emil Post showed how machines that fol-
lowed simplt? string-matching condition-action rules could

perform all computations. Subsequently, theorem provers
were developed for automating deduction. The dual goals of
performing human problem-solving tasks and avoiding some
of the gross inefficiencies of general-purpose deduction led
to condition-action production-rule systems. These often
emphasized low-level and detailed activities, though, and so
knowledge rules were developed that could embody chunks
of expert know-how. With the initial success of knowledge
rules for expert systems, many people began developing
general-purpose rule-based programming systems. A single
rule in these systems could often combine analytical knowl-
edge about a problem domain with control knowledge about
ways to achieve problem-solving efficiency. These two forms
were subsequently distinguished, with control blocks ex-
pressing imperative knowledge in procedural form, and meta-
rules representing other forms of knowledge about knowl-
edge in a rule-based format.

The cognate areas have both supported and adapted to
developments in FIBS technology. Computing theory has

FIGURE 6. The Evolution of RBS Concepts

930 Communications of the ACM September 1985 Volume 28 Number 9

Special Section

High-level.problem-solving.approach:
In order to diagnose and repair a car, follow this procedure:

C is a car.
Display the following:

Welcome to the Car Charging Diagnosis and Repair Adviser.
Find out about a car called C.
Determine the initial symptoms of the car C.
Determine the cause of the problem with the car C.
Determine the recommendations for fixing the problem

with the car C.
Show the recommendations to fix the problem with the car C.

S.1 provides a procedural syntax for expressing imperative sophisticated RBS enhances intelligibility and produces im-
knowledge. By distinguishing control blocks and rules, the proved explanations of its lines of reasoning.

FIGURE 7. A Control Block Expressing Procedural Know-How in a Sophisticated RBS

The S.le expert-system building tool, also developed
at Teknowledge, advanced previous RBS technology by
differentiating representations for analytic and impera-
tive knowledge. S.1 employs rules for analytic knowl-
edge and procedural control blocks for imperative
knowledge. It provides a built-in back-chaining control
mechanism with points of escape for user-supplied con-
trol blocks. By separating these two forms of knowl-
edge, users can create more intelligible knowledge
bases that are capable of providing much improved au-
tomated explanations. Figure 7 shows a control block
that defines an approach to organizing rule-based rea-
soning for diagnosing automotive problems. It would
employ the automotive diagnostic rules shown in
Figure 2.

IMPLEMENTATION AND AVAILABILITY
Table II is a list of supported tools that are currently
available for RBSs. Current goals in RBS-related R&D,

S.1 is a trademark of Teknowledge.

provided a foundation in automatons, grammars, theorem
proving, relational algebra, applicative programming styles,
executable specifications, and distributed controt. Psychol-
ogy has contributed some extremely general and simple
views of intelligent functions (e.g., Markov models, the Ele-
mentary Perceiver and Memorizer (EPAM), and the General
Problem Solver (GPS)) to successively more knowledge-
jntensive and elaborated views of cognition. Later conceptual
generations distinguish what is known from how it can be
applied, taught, or made more efficient. The primary focus of
applications has shifted from general-purpose simulation,
string processing, and automated deduction, to more press-
ing, higher value, and knowledge-intensive concerns. Suc-
cessively, these tasks have emphasized the need for heuris-
tic solutions, specialized expert systems for problem solving,
autonomous intelligent agents, knowledge systems for stor-
ing and distributing large quantities of institutional knowledge
in electronic form, and heuristic systems for adaptive control
and other management tasks.

as defined by the DOD-sponsored Strategic Computing
Initiative, are

1.

2.

3.

4.

5.

6.

increasing the size of practical rule bases to 10K or
more,
increasing the speed by two orders of magnitude or
more,
broadening the set of inference techniques used by
interpreters,
improving the methods for reasoning with uncer-
tainty,
simplifying the requirements for creating and ex-
tending knowledge bases, and
exploiting parallel computing in RBS execution.

ASSESSMENT: THE REPUTATION
VERSUS THE REALITY
Because RBSs have played an important role in demon-
strating the importance and practicality of knowledge
systems, they have received much attention. It should
be pointed out that RBSs are not a panacea, either for
DP problems or for AI problems. They do, however,
represent a new technology of broad and important ap-
plicability and will undoubtedly play an increasingly
important role in these fields in years to come.

Today, rule-based components are becoming stan-
dard in advanced applications. DEC and NCR have in-
corporated them in their XCON and OCEAN order-
entry and configuration systems. General Motors has
undertaken several rule-based expert systems for man-
ufacturing and service functions. Numerous aggressive
development programs under way throughout the
world, including the Fifth Generation program in Japan,
the Alvey program in England, and the Strategic Com-
puting and MCC programs in the United States, all aim
to make significant improvements in the performance
and generality of this technology over the next five to
ten years.

We conclude by listing the key strengths and weak-
nesses of RBS technology, as well as some long- and
short-term objectives. First the strengths:

September 1985 Volume 28 Number 9 Communications of the ACM 931

Special Section

TABLE II. A Representative Set of RBS Software Products

bduct Host Vendor

Tools for commercial M.l IBM PC Teknowledge
development OPS VAX Digital

s.1 VAX, Symbolics Teknowledge

Tools for research and ART Symbol& Inference
experimentation ROSIE VAX, Xerox RAND

1.

2.
3.
4.

5.

6.

7.

8.

9.

RBSs can represent problem-solving know-how in a
manner suitable for application by computers;
they modularize chunks of knowledge:
they support incremental development;
they make decision making more intelligible and
explainable;
they provide a fertile framework for conceptualiz-
ing computation in general:
they open new opportunities by providing a non-
von Neumann schema that can exploit parallelism
in computer systems;
specialized RBS architectures have emerged that
constrain and simplify application methods;
recent advances in RBS technology distinguish im-
perative and analytic know-how evenas they inte-
grate them to produce more effective, cogent, and
maintainable knowledge bases;
rule-based reasoning can provide a conceptual basis
for the analytic formulation of imperative know-
how.

RBSs are still without several features that would
help to make them more suitable as a general comput-
ing approach; specifically, they lack

1.

2.

3.

4.

5.

a precise analytic foundation for deciding which
problems are solvable,
a suitab:ie verification methodology or a technique
for testing the consistency and completeness of a
rule set,
a theory of knowledge organization that would fa-
cilitate scaling up without loss of intelligibility or
performance,
high-grade rule compilers and specialized hardware
accelerators, and
methods for integrating easily and seamlessly into
conventional DP systems.

The near-term research objectives include

1. integration with conventional software systems,
2. modularization and reuse of components, and
3. shareab.tlity of knowledge bases among several re-

lated applications.

Beyond these near-term objectives, some long-term
goals are

I. improved hardware for storage and execution tasks,
2. improved standard software and algorithms for

common functions,

3.

4.

5.

improved architectures for using metaknowledge
efficiently,
automatic translation of diverse forms of knowledge
into rule form, and
optimizing compilers for performing global data-
flow optimizations and exploiting multiprocessor
opportunities.

Acknowledgments. I am grateful to the many col-
leagues who have shared their experiences and percep-
tions regarding RBSs with me. While there are too
many people to name, most are at Carnegie-Mellon,
Stanford, RAND, and Teknowledge. I am also grateful
for the generous support from Teknowledge that has
made the contribution of this paper possible.

FURTHER READINGS
The suggested readings span a range from introductory to state of the
art. The article by Duda and Gasching is a readable. simple introduction.
Erman et al. describes the motivations behind S.1 and the techniques
that were used to distinguish analytical rules from imperative prescrip
tions. Hayes-Roth et al. surveys a variety of issues in representing and
implementing know-how; it covers but is not limited to RBSs. Shortlifle
describes one of the seminal projects in RBS technology. Waterman and
Hayes-Roth surveys the RBS field and the closely related but more
general pattern-directed inference systems.

Duda, R.O., and Gaschnig, J.C. Knowledge-based expert systems coming
of age. BYTE 6, 9 (Sept. 19811, 238-278.

Erman. LX., Scott, A.C.. and London, P.E. Separating and integrating
control in a rule-based tool. In Proceedings of the IEEE Workshop on
Principles of Knowledge-Based Systems (Denver. Cola.. Dec.). IEEE,
1984.37-43.

Hayes-Roth, F.. Waterman, D.A., and Lenat. D.B. Building Expert Systems.
Addison-Wesley, Reading, Mass., 1983.

Shortliffe. E.H. Computer Based Medical Consultations: MYCIN. Elsevier
North Holland. New York. 1976.

Waterman. D.A., and Hayes-Roth, F. Pattern-Direcfed Inference Systems.
Academic Press. New York. 1978.

CR Categories and Subject Descriptors: 1.21 [Artificial Intelligence]:
Applications and Expert Systems; 1.2.3 (Artificial Intelligence]: Deduc-
tion and Theorem Proving-deduction (e.g., nafural. rule-based); 12.4 [Ar-
tificial Intelligence]: Knowledge Representation Formalisms and Metlz-
ods: 12.5 [Artificial Intelligence]: Programming Languages and Software

Additional Key Words and Phrases: rule-based systems

Author’s Present Address: Frederick Hayes-Roth, Teknowledge. Inc.. 525
University Avenue. Palo Alto. CA 94301.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

932 Communications of the ACM September 1985 Volume 28 Number 9

