
SPECIAL SECIKM! 

RULE-BASED SYSTEMS 

Rule-based systems automate problem-solving know-how, provide a means for 
capturing and refining human expertise, and are proving to be commercially 
viable. 

FREDERICK HAYES-ROTH 

Rule-based systems (RBSs) constitute the best currently 
available means for codifying the problem-solving 
know-how of human experts. Experts tend to express 
most of their problem-solving techniques in terms of a 
set of situation-action rules, and this suggests that RBSs 
should be the method of choice for building knowledge- 
intensive expert systems. Although many different 
techniques have emerged for organizing collections of 
rules into automated experts, all RBSs share certain key 
properties: 

1. 

2. 

3. 

4. 

5. 

They incorporate practical human knowledge in 
conditional if-then rules, 
their skill increases at a rate proportional to the 
enlargement of their knowledge bases, 
they can solve a wide range of possibly complex 
problems by selecting relevant rules and then com- 
bining the results in appropriate ways, 
they adaptively determine the best sequence of 
rules to execute, and 
they explain their conclusions by retracing their 
actual lines of reasoning and translating the logic of 
each rule employed into natural language. 

RBSs address a need for capturing, representing, stor- 
ing, distributing, reasoning about, and applying human 
knowledge electronically. They provide a practical 
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means of building automated experts in application 
areas where job excellence requires consistent reason- 
ing and practical experience. Table I lists some applica- 
tion areas currently addressed by RBS technology. 

The hallmark of these systems is the way they repre- 
sent knowledge about plausible inferences and pre- 
ferred problem-solving tactics. Typically, both sorts of 
know-how are represented as conditional rules. Figures 
I and 2 illustrate rules that apply in a variety of appli- 
cations and that employ some of the basic syntactic 
conventions of RBSs. 

We can define RBSs as modularized know-how systems, 
where know-how is practical problem-solving knowl- 
edge. Such knowledge consists of various kinds of infor- 
mation, including 

1. specific inferences that follow from specific obser- 
vations; 

2. 

3. 

4. 

5. 

abstractions, generalizations, and categorizations of 
given data; 
necessary and sufficient conditions for achieving 
some goal; 
likeliest places to look for relevant information; 
preferred strategies for eliminating uncertainty or 
minimizing other risks; 

6. likely consequences of hypothetical situations; 
7. probable causes of symptoms. 
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TABLE I. Appliiations of RBBs 

Equipment maintenance 

Component selection 

Computer operation 

Product configuration 

Troubleshooting 

Process control 

Quality assurance 

Diagnosing faults and 
recommending repairs 

Eliciting requirements and 
matching parts from an 
electronics catalog 

Analyzing requirements, and 
selecting and operating 
software 

Eliciting preferences and 
identifying parts that satisfy 
constraints 

Analyzing situatiis, suggesting 
treatments, and prescribing 
preventative measures 

Spottlng problematic data and 
remedying inegufarfties 

Assessing tasks, proposing 
practices, and enforcing 
requirements 

Today’s RBS technology provides the first practical 
methodology and notation for developing systems capa- 
ble of knowledge-intensive performance. Although arti- 
ficial intelligence (AI) researchers have developed sev- 
eral alternabves, only the RBS approach consistently 
produces expert problem solvers. This reflects a feature 
of the current state of the art. in automatic reasoning- 

that RBSs can directly incorporate rules that emulate 
the effective special-case reasoning characteristic of 
highly experienced professionals. General-purpose de- 
ductive schemes do not emulate experts and therefore 
lack the efficiency necessary for solving complex prac- 
tical problems. Because each rule in an RBS approxi- 
mates an independent nugget of know-how, these sys- 
tems have two characteristic features: First, existing 
knowledge can be refined, and new knowledge added, 
for incremental increases in system performance. Sec- 
ond, systems are able to explain their reasoning, mak- 
ing their logic practically transparent and allowing 
them to satisfy the widely recognized need for under- 
standability in computer systems. 

By incorporating know-how acquired in an incre- 
mental and transparent manner, RBSs open up key 
computing applications not readily addressable by al- 
ternative techniques. Some of these applications are in 
areas where the supply of quality human workers is 
insufficient. There are a number of possible reasons for 
this: The skill level among trained workers may not be 
consistently high enough, experts may perform at a 
level far beyond that of average workers, or conven- 
tional means of training and automation may fail to 
produce adequate performance. Automating expertise 
in specialized tasks generally requires a few hundred to 
a few thousand heuristic rules. With existing technol- 
ogy, this makes good economic sense in hundreds of 
application areas. 

Of course, in spite of such relevance and potential, 

If the plaintiff did receive an eye injury 
and there was just one eye that was injured 
and the treatment for the eye did require surgery 
and the recovery from the injury was almost complete 
,and visual acuity was slightly reduced by the injury 
and the condition is fixed, 

increase the injury trauma factor by $10,000. 

If the plaintiff's injury did cause 
(a temporary disability of an important function) 

and the plaintiff's doctors were not certain about 
the disability being temporary 

and the plaintiff's recovery was almost complete 
and the condition is fixed, 

increase the fear factor by $1,000 per day. 

If the plaintiff did not wear glasses before the injury 
and the plaintiff's injury does require 

(the plaintiff to wear glasses), 
increase the faculty loss factor by $7,500 

and increase the inconvenience factor by $1,500. 

The ROSIE programming system, developed at RAND, provides and actions. Each rule expresses an independent chunk of 
a stylized English-like syntax for expressing conditions know-how. 

flGURE 1. The Representation of Legal Heutistics for Product Liabilii in a ROBIE Program 
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Rule408: 
C is a car. 
If: the pattern observed by attaching an oscilloscope 

to the charging circuit of the'car C is 
fluctuating.arches, and 

the alternator of the car C responds properly to 
different loads, 

Then: there is strongly suggestive evidence <.Q> that 
the cause of the problem with the car C is 
voltage.regulator.bad. 

Rule428: 
C is a car. 
If: the pattern obtained by attaching an oscilloscope to the 

charging circuit of the car C is straight.line, and 
the result pulling out the field connector is no.flash, and 
the field connector has does not have a voltage, and 
the input of the voltage regulator does not have a voltage, and 
the dashboard lights do not glow when their 

ground circuit is completed, and 
the fusable link is getting voltage, and 
the fusable link is not conducting power, 

Then: it is definite <l.O> that the cause of the problem with the car C 
is fusable.link.bad. 

As cars incorporate more electronic subsystems, they become StrUCtUral framework for organizing and applying thousands of 
more difficult for the average technician to repair. rules. General Motors plans to aid its service technicians with 
Teknowledge’s S.1 expert-system building tool provides a several large-scale RBSs. 

FIGURE 2. The Representation of Automotive Troubleshooting Rules in an S.l Program 

RBS technology does have its shortcomings. As a new 
technology, it will require years of perfecting and fine 
tuning. Proposed applications must be assessed care- 
fully for feasibility and deployability. Only a small frac- 
tion of potential applications can be addressed today 
with off-the-shelf products. Nevertheless, RBSs consti- 
tute the best means available for building expert sys- 
tems that incorporate large amounts of judgmental, 
heuristic, experiential know-how. Informal surveys in- 
dicate that approximately 50 percent of the Fortune 500 
companies are investing in RBSs, and that about 10 
percent have applications under development. 

The operating concept of RBSs differs radically from 
von Neumann architectures. Intelligent problem solv- 
ing with RBSs involves an iterative cycle of (1) identify- 
ing from experience the heuristic rules that bear on a 
problem at hand, and (2) applying one of those rules to 
solve or simplify the problem. The technology for 
building RBSs supports this cycle by providing a dy- 
namic working memory for partial results, a device to 
identify relevant rules, and selective means for apply- 
ing desirable rules. Many people conjecture that hu- 
man problem-solving activity follows the RBS model. 
Whether or not that proves true, human experts gener- 
ally find it easy to express methods for solving prob- 
lems in their application areas by using a rule formula- 
tion. 

The technology for building RBSs has progressed sig- 
nificantly in the last 10 years, as many people have 
analyzed the technology and assessed its relevance for 
a variety of tasks. Today, we can see that rule-oriented 
components are becoming central in many advanced 
computing applications. 

AN OVERVIEW OF RBSs 
Roughly speaking, an RBS consists of a knowledge base 
and an inference engine (see Figure 3). The knowledge 
base contains rules and facts. Rules always express a 
conditional, with an antecedent and a consequent com- 
ponent. The interpretation of a rule is that if the ante- 
cedent can be satisfied the consequent can too. When 
the consequent defines an action, the effect of satisfying 
the antecedent is to schedule the action for execution. 
When the consequent defines a conclusion, the effect is 
to infer the conclusion. 

Because the behavior of all RBSs derives from this 
simple regimen, their rules will always specify the ac- 
tual behavior of the system when particular problem- 
solving data are entered. In so doing, rules perform a 
variety of distinctive functions: 

1. They define a parallel decomposition of state transi- 
tion behavior, thereby inducing a parallel decompo- 
sition of the overall system state that simplifies au- 
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Knowledge 
base 

Inputs . 

A simple BE6 consists of.stomge and processingetements, 
whii are aften referred to resgectivety as tha knowtedge 
base and the inference engine. The basic oycte of an BBS 
consists of a seleot phase and an execute *aso During the 
execute phase, the system interprets the s&o&d rule to 
draw inferences that alter the system’8 dynamic memory. 
System storage inclmtes components for Wig-term static 
data and short-term dynamic: data. The fonptann store, 
whii is ths krmwtadga base, contains rules and facts. Rules 
specify actions the syetem should initiate when certain trig- 
gering conditions occur. These conditions deEne important 

patterns of data that can arise in working memory. The sys- 
tem represents data in terms of relations, propositions, or 
equivalent logical expressions. Facts define static, true prop- 
ositiis. In contrast to conventional data-processing sys- 
tems, most RBSs distribute their logic over numerous inde- 
pendent condition-act&n rules, monitor dynamic results for 
trtggering patterns of data, determine their sequential behav- 
ior’by selecting their next activity from a set of candidate- 
triggered rules, and store their intermediate results exclu- 
sively in a global working memory. 

FIGURE 3. The Basic Features of an RBS 

diting and explanation. Every result can thus be 
traced to its antecedent data and intermediate rule- 
based inferences. 

2. They can simulate deduction and reasoning by ex- 
pressing logical relationships (conditionals) and def- 
initional equivalences. 

3. They can simulate subjective perception by relating 
signal data to higher level pattern classes. 

4. They can simulate subjective decision making by 
using conditional rules to express heuristics. 

Several key techniques for organizing RBSs have 
emerged. Rules can be used to express deductive 
knowledge, :such as logical relationships, and thereby to 
support inference, verification, or evaluation tasks. 
Conversely, rules can be used to express goal-oriented 
knowledge that an RBS can .apply in seeking problem 
solutions and cite in justifying its own goal-seeking be- 
havior. Finally, rules can be used to express causal 
relationships, which an RBS can use to answer “what 
if’ questions, or to determine possible causes for speci- 
fied events. 

An RBS can only solve problems if it incorporates 
rules that use symbolic descriptions to characterize rel- 

evant situations and corresponding actions. The lan- 
guage employed for these descriptions imposes a con- 
ceptual framework on the problem and its solution. The 
rules may be precise or gross; the intermediate partial 
solutions abstract or detailed. Efforts to solve the prob- 
lem may proceed top-down, outside-in, bottom-up, or 
in some other way. The meaning, importance, and con- 
tribution of each rule depend on its effectiveness as a 
contributor within the entire set of rules available for 
solving a problem. 

Facts, the other kind of data in a knowledge base, 
express assertions about properties, relations, proposi- 
tions, etc. In contrast to rules, which the RBS interprets 
as imperatives, facts are usually static and inactive- 
implicitly, a fact is silent regarding the pragmatic value 
and dynamic utilization of its knowledge. Thus, al- 
though in many contexts facts and rules are logically 
interchangeable, in the context of RBSs they are quite 
distinct. 

In addition to its static memory for facts and rules, an 
RBS uses a working memory to store temporary asser- 
tions. These assertions record earlier rule-based infer- 
ences. We can describe the contents of working mem- 
ory as problem-solving state information. Ordinarily, the 
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data in working memory adhere to the syntactic con- 
ventions of facts. Temporary assertions thus correspond 
to dynamic facts. 

The computing environment for rule interpretation 
consists of current facts and the inference engine itself. 
Together, these provide a context for interpreting the 
current state, understanding what the rules mean, and 
applying relevant rules appropriately. Evidence of this 
implicit frame of reference can be found in Figures 1 
and 2. The legal rules specify the changes that are to be 
made to various “factors” under various conditions, and 
the auto repair rules draw conclusions about the causes 
of problems. Of course, these rules are not universally 
valid. Each depends on many unstated assumptions in 
its particular frame of reference. The validity of these 
rules depends critically on their being interpreted in 
the right context. Thus, RBSs cannot obviate all the 
concerns of conventional computer programming (e.g., 
state sequences and variable scoping) because someone 
must still ensure that an RBS applies rules appropri- 
ately and in meaningful contexts. Many people mistak- 
enly assume that RBSs can turn unstructured heaps of 
universally valid, independent rules into effective prob- 
lem solvers. That is a serious misinterpretation of cur- 
rent technology. Furthermore, rule writers must con- 
sider the rule interpretation environment to ensure that 
a rule or its applications can be translated into appro- 
priate natural language. 

The basic function of an RBS is to produce results. 
The primary output may be a problem solution, the 
answer to a question, or an analysis of some data. 
Whatever the case, an RBS employs several key pro- 
cesses in determining its overall activity. A “world” 
manager maintains information in working memory, 
and a built-in control procedure defines the basic high- 
level loop; if the built-in control provides for pro- 
grammable specialized control, an additional process 
manages branches to and returns from special control 
blocks. 

THE RBS NICHE IN COMPUTING 
RBSs address a number of shortcomings in conven- 
tional programming technology, among them 

1. the nonspecifiability of programs, 
2. the rapid changes in principles of operation that 

can arise during development, 
3. the lack of user/expert participation in operations 

specification, 
4. the lack of experimental development for computer. 

based competence, and 
5. the lack of expertise in exploiting computer capa- 

bilities. 

Among the features that allow them to do this are 

1. modular know-how; 
2. knowledge bases for storing rules and facts that di- 

rectly determine decisions; 
3. the capacity for incremental development with 

steady performance improvements; 

4. explanations of results, lines of reasoning, and 
questions asked; 

6. intelligibly encoded beliefs and problem-solving 
techniques; 

6. inference chains assembled dynamically by built-in 
control procedures that can often perform efficient 
searches. 

Given this wide range of important applications, it 
seems probable that the role of RBSs in program devel- 
opment will be expanding. 

THE RULE AS AN OBJECT 
We speak of a rule as a relatively independent piece or 
chunk of know-how. Psychologists have for some time 
emphasized the importance of chunks as elementary 
patterns in perception and thinking. Chunks are a dis- 
tinctly subjective psychological phenomenon: They re- 
flect the learned, appropriate, effective distinctions that 
people use to make sophisticated high-level decisions. 
A rule can serve as just such a chunk of problem- 
solving know-how. 

As used by most RBSs, rules specify chunks of ana- 
lytic problem-solving knowledge. A rule is a datum em- 
ployed by an inference engine to infer a solution to its 
goal problem. Thus, a rule writer who expresses know- 
how in rule format is offering one possible path to re- 
ducing a goal to subgoals, to drawing a plausible infer- 
ence from plausible data, or to transforming an expres- 
sion. This information about the rule typically com- 
prises its familiar if-then components. However, as the 
number of rules in an RBS grows, a need arises for rule 
components that can support multiple functions (see 
Figure 4) and thereby extend and maintain the knowl- 
edge base. For this reason, many additional facets or 
attributes are introduced to represent data about a 
rule’s analytic knowledge and its preferred manner 
of use. 

RBS ARCHITECTURE 
An RBS is generally a complete computing system, 
which is to say that it can produce an output by apply- 
ing memory and processing to an input. An architec- 
tural inventory of RBS technology would include the 
following four basic elements: 

Rules. From an architectural perspective, rules are 
data that generally conform to highly specialized gram- 
mars capable of using symbolic expressions to define 
conditions and actions. Current systems differ primarily 
in the generality and notational convenience their sym- 
bologies support. 

Interpreters. The rule interpreter matches a rule com- 
ponent to working memory data. Generally this re- 
quires pattern matching to find constants in working 
memory that match identical constants or unbound 
variables in rule patterns. Existing systems differ pri- 
marily in the methods they use to simplify rule defini- 
tion and pattern matching. The action of the rule is 
produced by another part of the rule interpreter. Ac- 
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ljuperstructure rI 
Contained in rule sets 

Conditional 

Data 

IF 

Date 

<Antecedent> THEN <Consequent> 

Author 

Uses 

. . . 

Translations 

Control 

Rules can ccxltain more information than can be found in a 
simple if-then conditional. The antecedent and consequent 
specify data sufficient for inferring a conclusion or performing 
another action, while other parts of a rule serve additional 
important ra4e.s. For instance, most large RBSs benefit from 
hierarcMal structuring, whereby individual rules can belong 
to one or more higher order cottections. These rule sets 
aggregate and differentiate rules according to their functii 
within the system. Thus, an RHS is capabte of ignoring rule 
sets that might be irrelevant to a particular probfem at a 
particular time. For instance, such data as who wrote a rule 
and when would be retevant to testing, evaluation, exptana- 
tion, and maintenance, but woukl be irrelevant when the rule 

was actually being used to make an inference. Typically. 
each rule exists in several alternative representatiis or 
translations that suit different purposes. For instance, one 
machineoriented translation might serve tne need for hgh- 
performance at run time, another human+riented form might 
use English to support pubtiition and explanation, a third 
could exploit terseness to make reading and editing easier, 
and other facets of the rule structure might determine how 
the inference engine should treat the rule. The system may 
need to trace rule evaluations and applications, justify a 
rule’s relevance, or even selectively ignore it under certain 
conditions. 

flGURE 4. The Organization of a Rule into Components to Support Multiple Functions 

tions generally fall into one of two categories: changes 
to working memory or changes to external actions 
like I/O. 

Translations. Nearly all RBSs allow for multiple repre- 
sentations of rules-one representation might be for 
data entry, .another for interpretation, and another for 
explanations. Typically, all rules are maintained in one 
preferred representation and translated as needed for 
other purposes. 

Explanations. The hallmark of RBSs has been their 
ability to explain their conclusions. Explanations have 
been generated by translating the rules that contributed 
to a decisio:n into natural language. This requires that a 
history of working memory changes and their causes be 
kept that can be searched as needed for explanations. 

Although RBSs have been organized in a variety of 
ways, they all share a basic configuration-they are 
sets of decisions about what meaning to give rules, and 
how and when to interpret them. Two organizations 
are most common: stimulus-driven or forward-chaining 
systems, and goal-directed or back-chaining systems. In a 
forward-chaining system, a rule is triggered when 
changes in ,working memory data produce a situation 

that matches its antecedent component. Some RBSs al- 
low rules to fire repeatedly as long as the working data 
still match the rule, but most process a specific working 
memory data configuration only once for each rule. In a 
back-chaining system, the RBS begins with a goal and 
successively examines any rules with matching conse- 
quent components. These candidate rules are consid- 
ered one at a time. The unmet conditions of the ante- 
cedent are extracted from each plausibly applicable 
rule, and these conditions are in turn defined as new 
goals. The back-chaining control procedure then shifts 
attention recursively toward the new goal. The effort 
terminates when the top goal has been reduced to a set 
of satisfied subgoals. 

From the point of view of computer architecture, two 
kernel facilities distinguish RBSs from conventional 
systems. First, RBSs make heavy use of pattern match- 
ing between rule components and working memory. 
Second, they quickly identify rules that become rele- 
vant as working memory changes. This means that 
there must be a way to access rules by pattern-matched 
values. Most RBSs meet this need with software, al- 
though some current hardware efforts are attempting to 
improve performance for these tasks. Figure 5 shows a 
representative sophisticated RBS. 

926 Communications of the ACM September 1985 Volume 28 Number 9 



Special Section 

IMPACTS AND APPLICATIONS 
OF RBS TECHNOLOGY 

Evolutionary System Development 
RBSs have proved invaluable as a practical means for 
evolving poorly understood knowledge into a coherent 
knowledge base. Although today’s RBSs are no substi- 
tute for a full range of mature data-processing (DP) 
application-building technology, they do offer a number 
of unique advantages that are missing from the conven- 
tional DP tool kit. We should anticipate that the essen- 
tial ingredients of RBSs will be imported into DP tech- 
nology, as the technology matures, to assist in rapid 
p.rototyping, improving extensibility, and enhancing 
software maintenance and support. 

and problem features explicitly, but can depend on the 
RBS to automate almost everything else necessary for 
solving the problem. 

We should anticipate that the complementary 
strengths of conventional programming and RBSs will 
motivate research efforts to bring the two technologies 
together so that applications will be able to exploit the 
advantages of both. 

Searches 
The focus on knowledge in applied AI systems repre- 
sents a reaction to the unsuccessful attempt to solve 
important problems using general-purpose or weak 
methods. As the importance of knowledge became 
clear, many AI researchers became knowledge engineers. 
These individuals set themselves the task of picking 
high-value problems with symbolic solutions, identify- 
ing corresponding human experts, and debriefing these 
experts to find out what they knew. 

In many cases, expertise is the ability that some peo- 
ple have to use shortcuts and labor-saving techniques 
that less experienced persons would not know about. 
Experts are thus able to reduce the equivalent of a 
large search space for a general problem-solving pro- 
gram to that of the small search space of a specialized, 
knowledge-intensive program. So although some RBSs 
do perform searches, most rely mainly on a representa- 
tion of the problem and chunks of the solution to sim- 
plify a task. Search is more of a last resort for these 
problem solvers. In fact, most RBSs perform little or no 
search. 

THE CONCEPTUAL EVOLUTION OF RBSs 
The RBS of today incorporates many influences and has 
partaken of many related technological developments 
(see Figure 6). Its essence derives from the production 
system model used in automaton theory and psychol- 
ogy. The basic model was the stimulus-response associ- 
ation presumed by some to underlie all animal behav- 
ior. In a similar manner, computing theorists have 
sometimes found it convenient to describe all computa- 
tional behavior in terms of state transition tables 
that define rules for moving between states. Oliver 
Selfridge’s early model, Pandemonium, viewed human 
signal interpretation activity in terms of the actions of 
independent pattern-action modules called “demons.” 
Each demon listened to the “shouts” of subordinates 
that were able to recognize constituent features that 
were necessary for the demon’s higher order percept. 
After hearing all necessary inputs, the demon shouted 
its own message, thus indicating the perception of a 
higher level pattern. 

Many researchers have gravitated toward rule-based 
representations of knowledge for two other reasons. 
First, rules seem like a natural way to express the 
situation-action heuristics evident in the thinking- 
aloud problem-solving protocols of experts. Second, 
researchers have been able to develop learning pro- 
cedures capable of inferring rules from experience. 
RBSs can thus often accept and assimilate newly 
learned rules merely by incorporating them into the 
knowledge base. 

Programming 
We have already stated that RBS technology requires a 
rule writer to consider and understand the organization 
and operation of the target system. Rule writing can in 
fact be described as a special kind of programming. Like 
conventional programming, effective rule programming 
requires mental modeling of state changes, syntactic 
and semantic checking of rule conditions and execution 
effects, and heuristic methods for validating and verify- 
ing a proposed system. In contrast to conventional pro- 
gramming, however, rule-based programming requires 
an author to think more analytically than procedurally, 
Most programmers have some difficulty with this for a 
few weeks. Instead of first appreciating the relevant 
goals and heuristic methods and then implementing a 
corresponding customized problem-solving program, 
rule-based programmers must first understand the gen- 
eral method of rule-based problem solving and then 
describe a problem and its related heuristic methods in 
a form consistent with the available knowledge base 
and inference engine. This is a different skill entirely. 
The rule programmer must formulate the heuristics 

Specialized RBS architectures have evolved to ad- 
dress different target applications. Each specialty seems 
to benefit from a slightly different emphasis. Today, 
special formalisms and supporting systems have been 
developed in such areas as 

1. rule-based programming, 
2. rule-based signal understanding, 
3. rule-based cognitive simulation, 
4. teachable and learnable RBSs, 
5. systems for learning rules, and 
6. systems for building commercjal 

systems. 
rule-based expert 

By now, the key ideas of RBSs have been incorporated 
in such other areas of computing as 

1. rule-based subsystems for communications archi- 
tectures; 

2. rule formalisms for representing military doctrine, 
standard policies, and historical precedents; 

3. rule-based controlled deduction; 
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FIGURE 5. A Representative Sophisticated RBS 
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flGURE 5. A Representative Sophisticated RBS 

The basic RBS is just a knowledge base and an inference 
engine. The trend, however, is toward more complex and 
sophisticated systems like the one pictured here. This trend 
is motivated by two goals: greater language clarity and better 
run-time parfom7ance. 

Knowledge clarity has to do with expressibility and intelligi- 
bility. Experts must be able to convey their knowledge to an 
RBS as thoroughly and as efficiently as possible, and the 
RBS in turn must be able to convey its knowledge and 
related reasoning to humans. Knowledge clarity also facili- 
tates the modifrcatii and extension of knowledge bases. 
Many of the features evident in the diagram, such as the 
multidimensional working memory (which distinguishes such 
dimensions as space, time, or level of abstraction) and the 
separation of rules from metarules and control procedures, 
improve knowledge clarity. 

The performance goal also motivates many of the embel- 
lishments of the sophisticated system. A rule compiler con- 
verts the triggering data conditions into a data&w network 
that optimizes the computing required to identify executable 
rules. The sophisticated system exploits several additional 
mechanisms that help to determine which rule should ba 
executed next. The prioritized list of rules awaiting execution 
constitutes the agenda. Higher level rules known as meta- 
rules express preferences that can influence the priority of 
specific candiiates on the agenda. The schedulsr examines 
the agenda of waiting rules and considers the applicability of 
any specialized control procedures the system includes. It 
then selects either a new procedure, a procedure continua- 
tion, or the action of a high-priority rule for execution. 

4. pattern-directed modules, or macrorules, for dis- 
tributed architectures and systems of cooperating 
experts; 

5. metarules for heuristic adaptive control of resource- 
limited systems; 

6. rules as a basis for enforcing constraints. 

THE EVOLUTION OF RBS TECHNOLOGY 
RBS technology incorporates many ideas from diverse 
sources. A brief and highly simplified recounting of this 
development follows, focusing on the principal develop- 
ments in computer science that have most advanced 
the RBS field. 

The starting point was decision tables and compilers. 
This technology, which emerged about 20 years ago, 
provided a representation of decision logic for transac- 
tion processing and report generation. Decision table 
entries define condition-action rules that execute se- 
quentially on the current input data. The context ef- 
fects are immediate because there are no working data. 
The only knowledge-base entries are the rules, which 
must represent simple Boolean conditions. The short- 
comings of decision tables were, in retrospect, consider- 
able: Large rule tables are quite complex, the rigid or- 
der of rule evaluation often proves unsatisfactory, and 
the inability to describe complex symbolic patterns or 

to combine intermediate results dynamically limits the 
range of applications. 

Early AI problem-solving languages like PLANNER, 
which was developed at MIT, provided a way to repre- 
sent rules within the context of programmable theorem 
provers. Workers at Carnegie-Mellon were the first to 
build RBSs with thousands of rules and to develop effi- 
cient compilers and translators. One such RBS, known 
as XCON, became the first expert system to earn a 
multimillion dollar profit. It was used to eliminate er- 
rors in Digital Equipment Corporation VAX orders. The 
general rule-based programming system known as OPS, 
which was used for XCON, has since been used for 
several other RBS applications. 

Workers at Stanford developed the MYCIN family of 
RBSs. MYCIN was the first RBS the expertise of which 
was acknowledged as such by experts. It was able to 
perform expert-level subjective reasoning with uncer- 
tain data and knowledge and to explain its reasoning in 
English. A similar system called PROSPECTOR, which 
was developed by SRI to automate knowledge of min- 
eral deposits, is credited with producing multimillion 
dollar benefits for at least one mine operation. Subse- 
quent work at Stanford on TEIRESIAS and MRS empha- 
sized metarules for expressing explicit knowledge 
about control. 

Systems at Stanford and CMU that were originally 
developed to reason about signal data have evolved to 
handle large macrorules known as specialists, knowledge 
sources, or pattern-directed modules. These systems, 
among which are HEARSAY-II, HASP, AGE, and BB-1, 
often pack a great deal of knowledge into a single mod- 
ule. Each module has a condition and an action, and as 
overall systems, they behave like other RBSs we have 
considered. They differ from more typical RBSs in us- 
ing local memory in their computations. In this regard, 
they have much in common with object-oriented archi- 
tectures like Smalltalk and Ada@ packages. 

PROLOG was the first general-purpose logic-based 
programming language. PROLOG is essentially an RBS 
that uses stored facts and rules to deduce solutions to 
goal patterns. It was designed for theorem proving, but 
has proved attractive for a wider range of AI tasks. 

The RITA and ROSIE systems developed by RAND 
advance the use of RBS methods for conventional pro- 
gramming. These systems blend rule-based program 
representation with flexible I/O. They are thus very 
attractive for designers of automated intelligent assis- 
tants for computer-based communication tasks. 

The M.le programming system developed at 
Teknowledge incorporates techniques for tolerating un- 
certainty and combining evidence in a general-purpose 
rule-based programming system that operates on an 
IBM personal computer. M.l marries the rule-based 
programming capabilities of PROLOG, RITA, and 
ROSIE to the evidence-combining capabilities of 
MYCIN. 
Ada is a trademark of the U.S. Department of Defense. 
Ml is a trademark of Teknowledge. 
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RBS technology is the result of efforts to apply general con- 
cepts from psychology and computing theory to the simula- 
tion of expertise. This figure, which is in the form of a nauti- 
lus, shows how RBS technology, psychology, computing 
theory, and various application areas are interconnected. 
Each new development in one area is shown to depend on 
developments in related areas, as well as on generations of 
previous developments. Different pathways through the spi- 
ral illustrate (different historical perspectives on technological 
history. Tracing the spiral clockwise recapitulates the succes- 
sive cycles of concurrent activity in the four sectors. Travers- 
ing a radial spoke outward from the center recapitulates the 
successive c:hanges in concept and zeitgeist within a disci- 
pline. 

At the outset, Markov rules provided a simple technique 
for defining stochastic processes with probabilistic rules that 
mapped any c&rent state into its possible successors. Math- 
ematical theorist Emil Post showed how machines that fol- 
lowed simplt? string-matching condition-action rules could 

perform all computations. Subsequently, theorem provers 
were developed for automating deduction. The dual goals of 
performing human problem-solving tasks and avoiding some 
of the gross inefficiencies of general-purpose deduction led 
to condition-action production-rule systems. These often 
emphasized low-level and detailed activities, though, and so 
knowledge rules were developed that could embody chunks 
of expert know-how. With the initial success of knowledge 
rules for expert systems, many people began developing 
general-purpose rule-based programming systems. A single 
rule in these systems could often combine analytical knowl- 
edge about a problem domain with control knowledge about 
ways to achieve problem-solving efficiency. These two forms 
were subsequently distinguished, with control blocks ex- 
pressing imperative knowledge in procedural form, and meta- 
rules representing other forms of knowledge about knowl- 
edge in a rule-based format. 

The cognate areas have both supported and adapted to 
developments in FIBS technology. Computing theory has 

FIGURE 6. The Evolution of RBS Concepts 
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High-level.problem-solving.approach: 
In order to diagnose and repair a car, follow this procedure: 

C is a car. 
Display the following: 

Welcome to the Car Charging Diagnosis and Repair Adviser. 
Find out about a car called C. 
Determine the initial symptoms of the car C. 
Determine the cause of the problem with the car C. 
Determine the recommendations for fixing the problem 

with the car C. 
Show the recommendations to fix the problem with the car C. 

S.1 provides a procedural syntax for expressing imperative sophisticated RBS enhances intelligibility and produces im- 
knowledge. By distinguishing control blocks and rules, the proved explanations of its lines of reasoning. 

FIGURE 7. A Control Block Expressing Procedural Know-How in a Sophisticated RBS 

The S.le expert-system building tool, also developed 
at Teknowledge, advanced previous RBS technology by 
differentiating representations for analytic and impera- 
tive knowledge. S.1 employs rules for analytic knowl- 
edge and procedural control blocks for imperative 
knowledge. It provides a built-in back-chaining control 
mechanism with points of escape for user-supplied con- 
trol blocks. By separating these two forms of knowl- 
edge, users can create more intelligible knowledge 
bases that are capable of providing much improved au- 
tomated explanations. Figure 7 shows a control block 
that defines an approach to organizing rule-based rea- 
soning for diagnosing automotive problems. It would 
employ the automotive diagnostic rules shown in 
Figure 2. 

IMPLEMENTATION AND AVAILABILITY 
Table II is a list of supported tools that are currently 
available for RBSs. Current goals in RBS-related R&D, 

S.1 is a trademark of Teknowledge. 

provided a foundation in automatons, grammars, theorem 
proving, relational algebra, applicative programming styles, 
executable specifications, and distributed controt. Psychol- 
ogy has contributed some extremely general and simple 
views of intelligent functions (e.g., Markov models, the Ele- 
mentary Perceiver and Memorizer (EPAM), and the General 
Problem Solver (GPS)) to successively more knowledge- 
jntensive and elaborated views of cognition. Later conceptual 
generations distinguish what is known from how it can be 
applied, taught, or made more efficient. The primary focus of 
applications has shifted from general-purpose simulation, 
string processing, and automated deduction, to more press- 
ing, higher value, and knowledge-intensive concerns. Suc- 
cessively, these tasks have emphasized the need for heuris- 
tic solutions, specialized expert systems for problem solving, 
autonomous intelligent agents, knowledge systems for stor- 
ing and distributing large quantities of institutional knowledge 
in electronic form, and heuristic systems for adaptive control 
and other management tasks. 

as defined by the DOD-sponsored Strategic Computing 
Initiative, are 

1. 

2. 

3. 

4. 

5. 

6. 

increasing the size of practical rule bases to 10K or 
more, 
increasing the speed by two orders of magnitude or 
more, 
broadening the set of inference techniques used by 
interpreters, 
improving the methods for reasoning with uncer- 
tainty, 
simplifying the requirements for creating and ex- 
tending knowledge bases, and 
exploiting parallel computing in RBS execution. 

ASSESSMENT: THE REPUTATION 
VERSUS THE REALITY 
Because RBSs have played an important role in demon- 
strating the importance and practicality of knowledge 
systems, they have received much attention. It should 
be pointed out that RBSs are not a panacea, either for 
DP problems or for AI problems. They do, however, 
represent a new technology of broad and important ap- 
plicability and will undoubtedly play an increasingly 
important role in these fields in years to come. 

Today, rule-based components are becoming stan- 
dard in advanced applications. DEC and NCR have in- 
corporated them in their XCON and OCEAN order- 
entry and configuration systems. General Motors has 
undertaken several rule-based expert systems for man- 
ufacturing and service functions. Numerous aggressive 
development programs under way throughout the 
world, including the Fifth Generation program in Japan, 
the Alvey program in England, and the Strategic Com- 
puting and MCC programs in the United States, all aim 
to make significant improvements in the performance 
and generality of this technology over the next five to 
ten years. 

We conclude by listing the key strengths and weak- 
nesses of RBS technology, as well as some long- and 
short-term objectives. First the strengths: 
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TABLE II. A Representative Set of RBS Software Products 

bduct Host Vendor 

Tools for commercial M.l IBM PC Teknowledge 
development OPS VAX Digital 

s.1 VAX, Symbolics Teknowledge 

Tools for research and ART Symbol& Inference 
experimentation ROSIE VAX, Xerox RAND 

1. 

2. 
3. 
4. 

5. 

6. 

7. 

8. 

9. 

RBSs can represent problem-solving know-how in a 
manner suitable for application by computers; 
they modularize chunks of knowledge: 
they support incremental development; 
they make decision making more intelligible and 
explainable; 
they provide a fertile framework for conceptualiz- 
ing computation in general: 
they open new opportunities by providing a non- 
von Neumann schema that can exploit parallelism 
in computer systems; 
specialized RBS architectures have emerged that 
constrain and simplify application methods; 
recent advances in RBS technology distinguish im- 
perative and analytic know-how evenas they inte- 
grate them to produce more effective, cogent, and 
maintainable knowledge bases; 
rule-based reasoning can provide a conceptual basis 
for the analytic formulation of imperative know- 
how. 

RBSs are still without several features that would 
help to make them more suitable as a general comput- 
ing approach; specifically, they lack 

1. 

2. 

3. 

4. 

5. 

a precise analytic foundation for deciding which 
problems are solvable, 
a suitab:ie verification methodology or a technique 
for testing the consistency and completeness of a 
rule set, 
a theory of knowledge organization that would fa- 
cilitate scaling up without loss of intelligibility or 
performance, 
high-grade rule compilers and specialized hardware 
accelerators, and 
methods for integrating easily and seamlessly into 
conventional DP systems. 

The near-term research objectives include 

1. integration with conventional software systems, 
2. modularization and reuse of components, and 
3. shareab.tlity of knowledge bases among several re- 

lated applications. 

Beyond these near-term objectives, some long-term 
goals are 

I. improved hardware for storage and execution tasks, 
2. improved standard software and algorithms for 

common functions, 

3. 

4. 

5. 

improved architectures for using metaknowledge 
efficiently, 
automatic translation of diverse forms of knowledge 
into rule form, and 
optimizing compilers for performing global data- 
flow optimizations and exploiting multiprocessor 
opportunities. 
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